问答题 已知函数f(x,y)满足f" xy (x,y)=2(y+1)e x ,f" x (x,0)=(x+1)e x ,f(0,y)=y 2 +2y,求f(x,y)的极值.
【正确答案】
【答案解析】[解] f" xy (x,y)=2(y+1)e x 两边以y积分,得
f" x (x,y)=(y+1) 2 e x +φ(x),
由f" x (x,0)=(x+1)e x ,有φ(x)=xe x
再f" x (x,y)=(y+1) 2 e x +xe x 两边以x积分,得
f(x,y)=(y+1) 2 e x +(x-1)e x +ψ(y),
用f(0,y)=y 2 +2y,可知ψ(y)=0,因而
f(x,y)=(y+1) 2 e x +(x-1)e x
解方程组