问答题
已知函数f(x,y)满足f"
xy
(x,y)=2(y+1)e
x
,f"
x
(x,0)=(x+1)e
x
,f(0,y)=y
2
+2y,求f(x,y)的极值.
【正确答案】
【答案解析】[解] f"
xy
(x,y)=2(y+1)e
x
两边以y积分,得
f"
x
(x,y)=(y+1)
2
e
x
+φ(x),
由f"
x
(x,0)=(x+1)e
x
,有φ(x)=xe
x
,
再f"
x
(x,y)=(y+1)
2
e
x
+xe
x
两边以x积分,得
f(x,y)=(y+1)
2
e
x
+(x-1)e
x
+ψ(y),
用f(0,y)=y
2
+2y,可知ψ(y)=0,因而
f(x,y)=(y+1)
2
e
x
+(x-1)e
x
,
解方程组