设A是n阶非零矩阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,如果A
T
=A
*
,证明任一n维列向量均可由矩阵A的列向量线性表出.
【正确答案】
正确答案:因为A
*
=A
T
,按定义有A
ij
=a
ij
(
,j=1,2,…,n),其中A
ij
是行列式|A|中a
ij
的代数余子式. 由于A≠0,不妨设a
11
≠0,那么 |A|=a
11
A
11
+a
12
A
12
+…a
1n
A
1n
=
【答案解析】
提交答案
关闭