设随机变量X 1 ,…,X n ,X n+1 独立同分布,且P(X 1 =1)=p,P(X 1 =0)=1一p,记
【正确答案】正确答案:EY i =P(X i +X i+1 =1)=P(X i =0,X i+1 =1)+P(X i =1,X i+1 =0)=2p(1一p),i=1,…,n, =2np(1一p),而E(Y i 2 )=P(X i +X i+1 =1)=2p(1一p),∴DY i =E(Y i 2 )一(EY i ) 2 =2p(1一p)[1—2p(1一p)],i=1,2,…,n。 若1一k≥2,则Y k 与Y l 独立,这时cov(Y k ,Y t )=0,而E(Y K Y K+1 ) =P(Y k =1,Y k+1 =1)=P(X k +X k+1 =1,X k+1 +X k+2 =1)=P(X k+1 =0,X k+1 =1,X k+2 =0)+P(X k =1,X k+1 =0,X k+2 =1)=(1一p) 2 p+P 2 (1一p)一p(1一p),∴cov(Y k ,Y k+1 )=E(Y k Y k+1 )一EY k EY k+1 =
【答案解析】