单选题
[2013年第13题]若f(一x)=一f(x)(一∞,+∞),且在(—∞,0)内有f'(x)>0,f"(x)<0,则在(0,+∞)内必有( )。
A、
f'(x)>0,f'(x)<0
B、
f'(x)<0,f"(x)>0
C、
f'(x)>0,f'(x)>0
D、
f'(x)<0,f"(x)<0
【正确答案】
C
【答案解析】
解析:由于在(一∞,0)内有f'(x)>0,f"(x)<0,f(x)单调增加,其图形为凸的。又函数f(x)在(一∞,+∞)上是奇函数,其图形关于原点对称,故在(0,+∞)内,f(x)应单调增加,且图形为凹的,所以有f'(x)>0,f"(x)>0,应选C。
提交答案
关闭