问答题
设随机变量Y
1
,Y
2
,Y
3
相互独立,且服从参数为p的0—1分布,令
问答题
求(X
1
,X
2
)的联合分布律;
【正确答案】
【答案解析】解:易知Y
1
+Y
2
+Y
3
~B(3,p),于是
P(X
1
=-1,X
2
=-1)=P(Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2)
=P(Y
1
+Y
2
+Y
3
=0)+P(Y
1
+Y
2
+Y
3
=3)
=(1-p)
3
+p
3
,
P(X
1
=-1,X
2
=1)=P(Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2)
=3p
2
(1-p),
P(X
1
=1,X
2
=-1)=P(Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2)
=3p(1-p)
2
,
P(X
1
=1,X
2
=1)=P(Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2)=0.
故联合分布律为:

问答题
问p为何值时,E(X
1
,X
2
)取最小值?
【正确答案】
【答案解析】解:E(X
1
X
2
)=1×P(X
1
=-1,X
2
=-1)+(-1)×P(X
1
=-1,X
2
=1)+(-1)×P(X
1
=1,X
2
=-1)+1×P(X
1
=1,X
2
=1)
故当

时,E(X
1
X
2
)取最小值
