问答题 设随机变量Y 1 ,Y 2 ,Y 3 相互独立,且服从参数为p的0—1分布,令
问答题 求(X 1 ,X 2 )的联合分布律;
【正确答案】
【答案解析】解:易知Y 1 +Y 2 +Y 3 ~B(3,p),于是
P(X 1 =-1,X 2 =-1)=P(Y 1 +Y 2 +Y 3 ≠1,Y 1 +Y 2 +Y 3 ≠2)
=P(Y 1 +Y 2 +Y 3 =0)+P(Y 1 +Y 2 +Y 3 =3)
=(1-p) 3 +p 3
P(X 1 =-1,X 2 =1)=P(Y 1 +Y 2 +Y 3 ≠1,Y 1 +Y 2 +Y 3 =2)

=3p 2 (1-p),
P(X 1 =1,X 2 =-1)=P(Y 1 +Y 2 +Y 3 =1,Y 1 +Y 2 +Y 3 ≠2)

=3p(1-p) 2
P(X 1 =1,X 2 =1)=P(Y 1 +Y 2 +Y 3 =1,Y 1 +Y 2 +Y 3 =2)=0.
故联合分布律为:
问答题 问p为何值时,E(X 1 ,X 2 )取最小值?
【正确答案】
【答案解析】解:E(X 1 X 2 )=1×P(X 1 =-1,X 2 =-1)+(-1)×P(X 1 =-1,X 2 =1)+(-1)×P(X 1 =1,X 2 =-1)+1×P(X 1 =1,X 2 =1)

故当 时,E(X 1 X 2 )取最小值