解答题
1.已知函数f(x,y)满足

35(x,y)=2(y+1)e
x,
【正确答案】由

=2(y+1)e
x,得

=(y+1)
2e
x+φ(x).
因为

(x,0)=(x+1)e
x,所以e
x+φ(x)=(x+1)e
x 得φ(x)=xe
x,从而

=(y+1)
2e
x+xe
x.
对x积分得f(x,y)=(y+1)
2e
x+(x一1)e
x+ψ(y),
因为f(0,y)=y
2+2y,所以ψ(y)=0,从而
f(x,y)=(x+y
2+2y)e
x.
于是

=(2y+2)e
x,

=(x+y
2+2y+2)e
x,

=2e
x.
令

=0,

=0,得驻点(0,一1),所以
A=

(0,一1)=1,B=

(0,一1)=0,C=

【答案解析】