设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在(a,b)内,g(x)≠0;(2)在(a,b)内至少存在一点ξ,使
【正确答案】正确答案:(1)设c∈(a,b),g(c)=0. 由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得g’(ξ 1 )=g’(ξ 2 )=0,其中ξ 1 ∈(a,c),ξ 2 ∈(c,b),对g’(x)在[ξ 1 ,ξ 2 ]上运用罗尔定理,可得g"(ξ 3 )=0. 因已知g"(x)≠0,故g(c)≠0. (2)F(x)=f(x)g’(x)一f"(x)g(x)在[a,b]上运用罗尔定理, F(a)=0.F(b)=0.
【答案解析】