填空题
6.
设A为三阶实对称矩阵,a
1
=(a,-a,1)
T
是方程组AX=0的解,a
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=_____________.
1、
【正确答案】
1、1
【答案解析】
因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,
因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,
a
1
=(a,-a,1)
T
,a
2
(a,1,1-a)
T
是它们对应的特征向量,所以有a
T
1
a
2
=a
2
-a+1-a=0,解得a=1.
提交答案
关闭