问答题
用欧拉法解初值问题
y'=x
2
+100y
2
,y(0)=0.取步长h=0.1,计算到x=0.3(保留到小数点后4位).
【正确答案】
因为y'=x
2
+100y
2
即f(x,y)=x
2
+100y
2
,
因为欧拉法公式为
y
n+1
=y
n
+hf(x
n
,y
n
)
取h=0.1,x
0
=0,y(x
0
)=y
0
=0
f(x
0
,y
0
)=0
所以y
1
=y
0
+0.1f(x
0
,y
0
)=0
f(x
1
,y
1
)=f(0.1,0)=0.01
y
2
=y
1
+0.1f(x
1
,y
1
)=0.001
f(x
2
,y
2
)=f(0.2,0.001)=0.0401
y
3
=y
2
+hf(x
2
,y
2
)=0.00501
【答案解析】
提交答案
关闭