已知sin
2
x,cos
2
x是方程y"+P(x)y'+Q(x)y=0的解,C
1
,C
2
为任意常数,则该方程的通解不是
【正确答案】
C
【答案解析】解析:容易验证sin
2
x与cos
2
x是线性无关的两个函数,从而依题设sin
2
x,cos
2
x为该方程的两个线性无关的解,故C
1
sin
2
x+C
2
cos
2
x为方程的通解.而(B),(D)中的解析式均可由C
1
sin
2
x+C
2
cos
2
x恒等变换得到,因此,由排除法,仅C
1
sin
2
2x+C
2
tan
2
x不能构成该方程的通解.事实上,sin
2
2x,tan
2
x都未必是方程的解,故选(C).