【答案解析】[解] 首先将空白处填上待求未知数
显然p
11
+0.02=0.1,故p
11
=0.08.
又因0=EX=-1·p
1·
+1·p
2·
=p
2·
-p
1·
,也就有p
1·
=p
2·
=0.5
所以
而1=0.1+p
·2
+p
·3
=0.1+(p
12
+p
22
)+(0.1+p
23
),即p
12
+p
22
+p
23
=0.8.
再考虑到P
22
+p
23
=0.48,所以p
12
=0.32,进一步得p
11
=0.08.
总之现有p
11
=0.08,p
12
=0.32,p
22
+p
23
=0.48.
现考虑X,Y不相关,即Cov(X,Y)=0,也就有EXY=EX·EY=0.
而XY的分布
由此得EXY=-0.12+p
11
+p
23
=0,即p
23
=0.04.
而p
22
+p
23
=0.48,p
22
=0.44.
总之
