【正确答案】正确答案:(1)记f(x)=x
5
一4x
3
+1,则B的特征值为f(1)=一2,f(2)=1,f(一2)=1. α
1
=(1,一1,1)
T
是A的属于1的特征向量,则它也是B的特征向量,特征值一2. B的属于一2的特征向量为cα
1
,c≠0. B也是实对称矩阵,因此B的属于特征值1的特征向量是与α
1
正交的非零向量,即是x
1
一x
2
+x
3
=0的非零解.求出此方程的基础解系α
2
=(1,1,0)
T
,α
3
=(0,1,1)
T
,B的属于特征值1的特征向量为 c
1
α
2
+c
2
α
3
,c
1
,c
2
不全为0. (2)B(α
1
,α
2
,α
3
)=(一2α
1
,α
2
,α
3
).解此矩阵方程得
