【答案解析】由

,得f(0)=1,再由
f(x)(x
2-x+1)=x+1,(*)
两边对x求一阶导数,得 f'(x)(x
2-x+1)+f(x)(2x-1)=1,
将x=0代入,得 f'(0)-f(0)=1,f'(0)=f(0)+1=2.
在(*)式两边对x求n阶导数,n≥2,有
f
(n)(x)(x
2-x+1)+C
n1f
(n-1)(x)(2x-1)+C
n2f
(n-2)(x)?2=0,
将x=0代入,得 f
(n)(0)-C
n1f
(n-1)(0)+2C
n2f
(n-2)(0)=0,
即 f(n)(0)=nf(n-1)(0)-n(n-1)f(n-2)(0),n=2,3,….
