【正确答案】正确答案:(1)令φ
n
(x)=f(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x)在(0,1)

(0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ'
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x)在(0,+∞)内的零点唯一,所以方程f(x)=1在(0,+∞)内有唯一正根,记为x
n
, (2)由f
n
(x
n
)-f
n-1
(x
n-1
)=0,得 (x
n
-x
n-1
)+(x
n
2
-x
n-1
2
)+…+(x
n
n
-x
n+1
n
)=x
n+1
n+1
>0,从而x
n
>x
n-1
,所以{x
n
}
n-1
单调减少,又x
n
>0(n=1,2,…),故

x
n
存在,设

x
n
=A,显然A≤x
n
≤x
1
=-1,由x
n
+x
n
2
+…+x
n
n
=1,得

=1,两边求极限得

=1,解得A=
