计算题 已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈ R,θ∈
问答题 5.当a=√2,θ=
【正确答案】当a=√2,θ=时,f(x)=sin(x+θ)+acos(x+2θ)=sin(x+)+√2cossinx+cosx-√2sinx=-cosx=sin (—x)=-sin(x-).∵x∈[0 ,π],∴x-,故f(x)在区间[0,π]上的最小值为-1,最大值为
【答案解析】
问答题 6.若f(
【正确答案】∵f(x)=sin(x+θ)+scos(x+2θ)a∈R,θ∈=0,f(π)=1,∴cosθ-asin2θ=0 ①,
-sinθ-acos2θ=1②,由①求得sinθ=,由②可得cos2θ=再根据cos2θ=1-2sinθ,可得-,求得a=-1,∴sinθ=-.综上可得,所求的a=-1,θ=-
【答案解析】