【答案解析】 解一 由题设知,f(x)在(一∞,+∞)上仅有一个第一类间断点,因而f(x)在任意区间[a,b]上可积.由命题1.1.1.3知,F(x)=∫
0x f(t)dt处处连续.又F(一x)=∫
0-x f(t)dt

一∫
0x f(一u)du=一∫
0x (一1)f(u)du=f(u)du=F(x),
故F(x)为连续的偶函数.仅(B)入选.
解二 由于题设条件含抽象函数,本例可由赋值法求解,即取符合题设条件的特殊函数f(x)去计算F(x),然后根据F(x)的性质确定正确选项:
令特殊函数f(x)=

它满足题设中所有条件,则
∫
0x f(t)dt=
