解答题 1.设f'(x)连续,f(0)=0,f'(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f'(0).
【正确答案】F(x)=∫0xtf(t2-x2)dt=0xf(t2-x2)d(t2-x2)
=-x22f(u)du
=0-x2f(u)du,
【答案解析】