=3(4-a
2
)=0, 可得a=±2。 当a>0,即a=2时,则由矩阵A的特征多项式 |λE-A|=
=(λ-2)(λ-5)(λ-1)=0, 可得矩阵A的特征值是1,2,5。 由(E-A)x=0,得基础解系α
1
=(0,1,-1)
T
; 由(2E-A)x=0,得基础解系α
2
=(1,0,0)
T
; 由(5E-A)x=0,得基础解系α
3
=(0,1,1)
T
。 即矩阵A属于特征值1,2,5的特征向量分别是α
1
,α
2
,α
3
。 由于A为实对称矩阵,且实对称矩阵不同特征值的特征向量相互正交,故只需将以上特征向量单位化,即有 γ
1
=
,γ
2
=
,γ
3
=
那么,令Q=(γ
1
,γ
2
,γ
3
)=
,则有Q
-1
AQ=
