正方体ABCD-A'B'C'D'的棱长为2,E,F分别是棱AD,C'D'的中点,位于E点处的一个小虫要在这个正方体的表面上爬到F处,它爬行的最短距离为______.
    A.
    B.4
    C.
    D.
    E.
【正确答案】 A
【答案解析】 两点间直线距离最短,把面CC'D'D沿DD'翻折与面AA'D'D构成一个长方形,连接EF,则
   把面ADD'A'沿A'D'翻折与面A'D'C'B'构成一个长方形,
   连接EF,则
   把面ABCD沿CD翻折与面CDD'C'构成一个长方形,
   连接EF,则
   故爬行的最短距离为
   综上所述,答案选择A.