解答题
8.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)e
y
+f(y)e
x
,又设f'(0)存在且等于a(a≠0),试证明对任意x,f'(x)都存在,并求f(x).
【正确答案】
将x=y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(0)=0,为证明f'(x)存在,则由导数定义,
【答案解析】
提交答案
关闭