解答题
24.
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且f'(x)>
【正确答案】
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt,
即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0.
令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ'(c)=0,
即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证.
(2)令h(x)=xf(x)-∫
x
1
f(t)dt,因为h'(x)=2f(x)+xf'(x)>0,所以h(x)在[0,1]上为单调函数,所以(1)中的c是唯一的.
【答案解析】
提交答案
关闭