若向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关,试问α
4
能否由α
1
,α
2
,α
3
线性表出?并说明理由.
【正确答案】正确答案:不能.因为已知α
2
,α
3
,α
4
线性无关,那么α
2
,α
3
线性无关,又因α
1
,α
2
,α
3
线性相关,所以α
1
可由α
2
,α
3
线性表出.设α
1
=l
2
α
2
+l
3
α
3
,如α
4
能由α
1
,α
2
,α
3
线性表出,那么α
4
=k
1
α
1
+k
2
α
2
+k
3
α
3
=(k
1
l
2
+k
2
)α
2
+(k
1
l
3
+k
3
)α
3
, 即α
4
可由α
2
,α
3
线性表出,则α
2
,α
3
,α
4
线性相关,与已知矛盾.因此,α
4
不能用α
1
,α
2
,α
3
线性表出.
【答案解析】