解答题 1.设f(x)在[0,1]上连续,且∫01f(x)dx=A,求∫01[∫x1f(t)dt+(1-x)f(x)dx.
【正确答案】令φ(x)=∫x1f(t)dt,则φ'(x)=一f(x), φ(0)=∫01f(t)dt=A.于是,原式=∫01[φ(x)+(x一1)φ'(x)]dx
=∫01[(x一1)φ(x)]'dx
=(x一1)φ(x)|01
=φ(0)
=A.
【答案解析】本题也可分项计算.
原式=∫01φ(x)dx+∫01(x一1)φ'(x)dx
=∫01φ(x)dx+(x一1)φ(x)|01- ∫01φ(x)dx
=(x一1)φ(x)|01
=φ(0)
=A.