设z= sin(x 2 一xy+y 2 ),求
【正确答案】正确答案:令u= ,v=x 2 -xy+y 2 , 则z=e u sinv,于是有 =e u sinv. +e u cosv.(2x—y) = sin(x 2 -xy+y 2 )+(2x—y)cos(x 2 -xy+y 2 )], =e u sinv.(- ) +e u cosv.(2y—x) = [(2y-x)cos(x 2 -xy+y 2 )-
【答案解析】解析:本题考查复合函数求导,引进中间变量化简运算求解即可.