解答题 7.设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数
【正确答案】因为|un+1-un|=|f(un)-f(un-1)|=|f’(ξ1)|un-un-1
≤q|un-un-1|≤q2|un-1-un-2|≤…≤qn|u1-u0
qn收敛,所以|un+1-un|收敛,于是
【答案解析】