填空题
微分方程y''-3y'+2y=2e
x
满足
【正确答案】
【答案解析】
特征方程为λ2-3λ+2=0,特征值为λ1=1,λ2=2,y''-3y'+2y=0的通解为 y=C1ex+C2e2x. 令原方程的特解为y0(x)=Axex,代入原方程为A=-2,原方程的通解为 y=C1ex+C2e2x-2xex 得y(0)=0,y'(0)=1,代入通解得C1=-3,C2=3,特解为y=-3ex+3e2x-2xex.
提交答案
关闭