单选题
3.
过点(1,0,0)与(0,1,0)且与曲面z=x
2
+y
2
相切的平面方程为( )
A、
z=0与x+y—z=1
B、
z=0与2x+2y—z=2
C、
y=x与x+y—z=1
D、
y=x与2x+2y—z=2
【正确答案】
B
【答案解析】
已知平面过A(1,0,0),B(0,1,0)两点,则x≠y是存在的,排除C,D选项,可得平面内一向量
曲面z=x
2
+y
2
的切平面法向量为n
2
=(2x,2y,一1)
由n
1
n
2
=0,2x一2y=0即切点处x=y.
联立方程组
提交答案
关闭