解答题 24.(1)求0x2xf(x-t)dt.
(2)设,求df(x)|x=1
(3)设F(x)=∫0xdy∫0y2
【正确答案】(1)由∫0x2xf(x-t)dt=x∫0x2f(x-t)dtx∫0x-x2f(u)(-du)=x∫x-x2xf(u)du得
0x2xf(x-t)dt=∫x-x2xf(u)du+x[f(x)-(1-2x)f(x-x2)].
(2)由f(x)==xex
f'(x)=(x+1)ex,从而f'(1)=2e,故df(x)|x=1=2edx.
(3)F'(x)=∫0x2dt,F''(x)=
【答案解析】