解答题 16.设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,…,Ak-1a线性无关.
【正确答案】令l0a+l1Aa+…+lk-1Ak-1a=0 (*)
(*)两边同时左乘AAk-1得l0Ak-1a=0,因为Ak-1a≠0,所以l0=0;
(*)两边同时左乘Ak-2得l1Ak-1a=0,因为Ak-1a≠0,所以l1=0,依次类推可得l2=…
=lk-1=0,所以a,Aa,…,Ak-1a线性无关.
【答案解析】