选择题
3.
设A=(a
1
,a
2
,…,a
n
),其中a
1
,a
2
,…,a
n
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,…,k
n
,皆有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,则( ).
A、
m>n
B、
m=n
C、
存在m阶可逆阵P,使得AP=
D、
若AB=O,则B=O
【正确答案】
D
【答案解析】
因为对任意不全为零的常数k
1
,k
2
,…,k
m
,有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,所以向量组a
1
,a
2
,…,a
m
线性无关,即方程组AX=0只有零解,故若AB=O,则B=O,选D.
提交答案
关闭