解答题 14.设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
【正确答案】对曲线L1,由题意得,解得y=x(2x+C1),
因为曲线L1过点(1,1),所以C1=一1,故L1:y=2x2一x.
对曲线L2,由题意得
因为曲线L2过点(1,1),所以C2=一1,故L2:y=
由2x2一x=得两条曲线的交点为及(1,1),
故两条曲线所围成区域的面积为
【答案解析】