解答题 22.设f(x)在[a,b]上连续,证明:∫abf(x)dx∫xbf(y)dy=
【正确答案】令F(x)=∫axf(t)dt,
则∫abf(x)dx∫xbf(y)dy=∫abf(x)[F(b)-F(x)]dx
=F(b)∫abf(x)dx-∫abf(x)F(x)dx=F2(b)-∫abF(x)dF(x)
=F2(b)-
【答案解析】