解答题 [2003年]设函数f(x)连续且恒大于零,
问答题 24.讨论F(t)在区间(0,+∞)内的单调性;
【正确答案】因Ω(t)为球体,且被积函数为x2+y2+z2的函数,故用球面坐标系计算三重积分,对分子使用球坐标变换x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ:
f(x2+y2+z2)dV=∫0dθ∫0πdφ∫0tf(ρ22sinφdρ
=∫0dθ∫0πsinφdφ∫0tf(ρ22
=4π∫0tf(ρ22dρ.
分母作极坐标变换x=rcosθ,y=rsinθ,得
【答案解析】
问答题 25.证明当t>0时,F(t)>(2/π)G(t).
【正确答案】F(t)一=2{∫0tf(r2)r2dr∫0tf(r2)dr—[∫0tf(r2)rdr]2}/[∫01f(r2)dr∫01rf(r2)dr].
令g(t)=∫0tf(r2)r2dr∫0tf(r2)dr一[∫0trf(r2)dr]2,则g(0)=0.又因f(x)恒大于零,有
g'(t)=f(t2)t20tf(r2)dr+f(t2)∫0tf(r2)r2dr一2f(t2)t∫0tf(r2)rdr
=f(t2)[∫0tf(t2)t2dr+∫0tf(r2)r2dr—2∫0tf(r2)rtdr]
=f(t2)∫0tf(t2)(t2一2rt+r2)dr
=f(t2)∫0tf(t2)(t一r)2dr>0.
故g(t)在(0,+∞)内单调增加,又g(0)=0,所以当t>0时有g(t)>0,又∫0tf(r2)dr∫01rf(r2)dr>0,故当t>0时

【答案解析】