单选题
设A,B为三阶方阵,且行列式|A|=-1/2,|B|=2,A
*
是A的伴随矩阵,则行列式|2A
*
B
-1
|等于:
【正确答案】
A
【答案解析】解析:方法1:|2A
*
B
-1
|=2
3
|A
*
B
-1
|=2
3
|A
*
|.|B| A
-1
=1/|A|A
*
,A
*
=|A|.A
-1
@A@A
-1
=E,|A|.|A
-1
|=1,|A
-1
|

|A
*
|=||A|.A
-1
|

B.B
-1
=E,|B|.|B
-1
|=1,|B
-1
|=1/|B|=1/2 因此,|2A
*
B
-1
|=2
3
×

=1 方法2:直接用公式计算,|A
*
|=|A|
n-1
,|B
-1
|=1/|B| |2A
*
B
-1
|=2
3
|A
*
B
-1
|=2
3
|A
*
||B
-1
|=2
3
|A
3-1
|
