单选题 设A,B为三阶方阵,且行列式|A|=-1/2,|B|=2,A * 是A的伴随矩阵,则行列式|2A * B -1 |等于:
【正确答案】 A
【答案解析】解析:方法1:|2A * B -1 |=2 3 |A * B -1 |=2 3 |A * |.|B| A -1 =1/|A|A * ,A * =|A|.A -1 @A@A -1 =E,|A|.|A -1 |=1,|A -1 | |A * |=||A|.A -1 | B.B -1 =E,|B|.|B -1 |=1,|B -1 |=1/|B|=1/2 因此,|2A * B -1 |=2 3 × =1 方法2:直接用公式计算,|A * |=|A| n-1 ,|B -1 |=1/|B| |2A * B -1 |=2 3 |A * B -1 |=2 3 |A * ||B -1 |=2 3 |A 3-1 |