选择题
7.设A,B均为n阶矩阵,且AB=A+B,则下列命题中,
①若A可逆,则B可逆; ②若A+B可逆,则B可逆;
③若B可逆,则A+B可逆; ④A—E恒可逆.
正确的有( )个.
【正确答案】
D
【答案解析】【思路探索】命题①②③是借助行列式来判别,而④是利用定义来判别.
由于(A—E)B=AB—B=A+B—B=A,若A可逆,则B可逆,即①正确.
若A+B可逆,则|AB|=|A+B|≠0,则|B|≠0,即B可逆,②正确.
由于A(B—E)=B,|A||B一E|=|B|,若B可逆,则|A|≠0,即A可逆,从而A+B=AB可逆,③正确.
对于④:由AB=A+B,可得(A—E)(B—E)=E,故A—E恒可逆.
故应选(D).