解答题 13.设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
【正确答案】令φ(χ)=e-χ0χf(t)dt,
因为φ(0)=φ(1)=0,所以存在ξ∈(0,1),使得φ′(ξ)=0,
而φ′(χ)=e-χ[f(χ)-∫0χf(t)dt]且e-χ,故f(ξ)=∫0ξf(t)dt.
【答案解析】