若 y"+2y'+5y=0, f (0)=1, f'(0) =-1 ,则
求 f (x)
y"+2y'+5y=0的特征方程为r2+2r+5=0 ∴r1.2=-1±2i ∴y(x)=e-x(c1cos2x+c2cos2x) y'(x)=-e-x(c1cos2x+c2cos2x)+e-x(-2c1cos2x+2c2cos2x) ∵y(0) =1, y'(0)=-1 ∴c1=1,c2=0 y(x)=e-xcos2x