问答题 求函数f(z,y)=4(x-y)-x2-y2的极值
【正确答案】fx=4-2x,fy=-4-2y,令fx=0,fy=0得驻点(2,-2).又由于A=fxx(2,-2)=-2,B=fxy(2,-2)=0,C=fyy(2,-2)=-2,AC-B2>0,A<0,由极值的充分条件判别法知,(2,-2)是极大值点,极大值为f(2,-2)=8.
【答案解析】