问答题
设随机变量X与Y独立,X服从参数为0.6的0-1分布,Y服从参数λ=1的指数分布,令U=X+Y,试求:
(Ⅰ)U的分布函数F(u)与概率密度f(u);
(Ⅱ)U与U2的协方差cov(U,U2).
【正确答案】[解] (Ⅰ)依题意X的概率分布为[*]Y的分布函数FY(y)为
[*]
于是 F(u)=P{U≤u}=P{X+Y≤u}
=P{X=0}P{X+Y≤u|X=0}+P{X=1}P{X+Y≤u|X=1}
=0.4P{Y≤u}X=0}+0.6P{Y≤u-1}X=1}.
由于X与Y独立,于是
P{Y≤u|X=0}=P{Y≤u}=FY(u),
P|Y≤u-1|X=1}=P{Y≤u-1}=FY(u-1).
F(u)=0.4FY(u)+0.6FY(u-1)
[*]
故[*]
(Ⅱ)依题意,EX=0.6,DX=0.24,EY=1,DY=1,
EU=E(X+Y)=EX+EY=0.6+1=1.6.
因X,Y独立,则D(X+Y)=DX+DY.于是
DU=D(X+Y)=DX+DY=0.24+1=1.24,
EU2=DU+(EU)2=1.24+1.62=3.8.
又[*]
故 cov(U,U2)=EU3-EUEU2=12-1.6×3.8=5.92.
【答案解析】[解析] [*]