解答题 18.设f'(x)在[0,1]上连续,且f(1)一f(0)=1.证明:∫01f'2(x)dx≥1.
【正确答案】由1=f(1)一f(0)=∫01f'(x)dx,得12=1=(∫01f'(x)dx)2≤∫0112dx∫01f'2(x)dx=∫01f'2(x)dx,即∫01f'2(x)dx≥1.
【答案解析】