试求:(I)常数C;(Ⅱ)概率
(Ⅱ)
(Ⅲ)分布函数F(x)=∫
-∞
x
f(t)dt,由于f(x)是分段函数,该积分在不同的区间上被积函数的表达式各不相同,因此积分要分段进行.要注意的是不管x处于哪一个子区间,积分的下限总是“一∞”,积分∫
-∞
x
f(t)dt由(一∞,x)的各个子区间上的积分相加而得. 当x≤0时,F(x)=∫
-∞
x
f(t)dt=∫
-∞
x
0dt=0; 当0<x≤2时,F(x)=∫
-∞
x
f(t)=∫
-∞
0
0dt+
当x>2时,F(x)=∫
-∞
x
f(t)dt=∫
-∞
0
0dt+
+∫
2
x
0dt=1, 因此
