问答题
设α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
。
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量。
【正确答案】正确答案:(Ⅰ)α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3

得a=-3。 (Ⅱ)与α
1
,α
2
,α
3
都正交的非零项向量即齐次方程组

的非零解,解此方程组:

解得α
4
=c(19,-6,0,1)
T
,c≠0。 (Ⅲ)只用证明α
1
,α
2
,α
3
,α
4
线性相关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示。 方法一:由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示,用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则(α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0,得α
4
=0,与α
4
是非零向量矛盾。 方法二:计算行列式

【答案解析】