解答题
13.
设f(x)在x
0
的邻域内四阶可导,且|f
(4)
(x)|≤M(M>0).证明:对此邻域内任一异于x
0
的点x,有|f"(x
0
)-
≤
【正确答案】
由f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+
(x-x
0
)+
(x-x
0
)+
(x-x
0
)
4
,f(x’)=f(x
0
)+f’(x
0
)(x’-x
0
)+
(x’-x
0
)
3
+
(x’-x
0
)
4
,
两式相加得f(x)+f(x’)-2f(x
0
)=f”(x
0
)(x-x
0
)
2
+
[f
(4)
(ξ
1
)+f
(4)
(ξ
2
)](x-x
0
)
4
,
于是|f”(x
0
)-
|≤
[|f
(4)
(ξ
1
)|+|f
(4)
(ξ
2
)|](x-x
0
)
2
,
再由|f
(4)
(x)|≤M,得|f”(x
0
)-
|≤
【答案解析】
提交答案
关闭