问答题 市场上的三种证券可能带来的回报:
【正确答案】正确答案:(1)①证券1的期望收益、方差和标准差分别为: =0.1×0.25+0.4×0.2+0.4×0.15+0.1×0.1=17.5% σ 1 2 =0.1×(0.25—0.175) 2 +0.4×(0.2—0.175) 2 +0.4×(0.15—0.175) 2 + 0.1×(0.1—0.175) 2 =0.00163 σ 1 = =4.03% ②证券2的期望收益、方差和标准差分别为: =0.1×0.25+0.4×0.15+0.4×0.2+0.1×0.1=17.5% σ 2 2 =0.1×(0.25—0.175) 2 +0.4×(0.15—0.175) 2 +0.4×(0.2—0.175) 2 + 0.1×(0.1—0.175) 2 =0.00163 σ 2 = =4.03% ③证券3的期望收益、方差和标准差分别为: =0.1×0.1+0.4×0.15+0.4×0.2+0.1×0.25=17.5% σ 3 2 =0.1×(0.1—0.175) 2 +0.4×(0.15—0.175) 2 +0.4×(0.2—0.175) 2 +0.1×(0.25—0.175) 2 =0.00163 σ 3 = =4.03% (2)根据协方差和相关系数的计算公式,可得: ①证券1和证券2的协方差: Cov(1,2)=0.1×(0.25—0.175)×(0.25—0.175)+0.4×(0.2—0.175)× (0.15—0.175)+0.4×(0.15—0.175)×(0.2—0.175)+ 0.1×(0.1—0.175)×(0.1—0.175)=0.000625 相关系数为: ρ 1,2 =Cov(1,2)/σ 1 σ 2 =0.000625/(0.0403×0.0403)=0.3846 ②证券1和证券3的协方差: Cov(1,3)=0.1×(0.25—0.175)×(0.1—0.175)+0.4×(0.2—0.175)× (0.15—0.175)+0.4×(0.15—0.175)×(0.2—0.175)+ 0.1×(0.1—0.175)×(0.25—0.175)=一0.001625 相关系数为: ρ 1,3 =Cov(1,3)/σ 1 σ 2 =一0.001625/(0.0403×0.0403)=一1 ③证券2和证券3的协方差: Cov(2,3)=0.1×(0.25—0.175)×(0.1一0.175)+0.4×(0.15—0.175)× (0.15—0.175)+0.4×(0.2—0.175)×(0.2—0.175)+ 0.1×(0.1一0.175)×(0.25—0.175)=—0.000625 相关系数为: ρ 2,3 =Cov(2,3)/σ 1 σ 3 =一0.000625/(0.0403×0.0403)=—0,3846 (3)证券1和证券2构成的投资组合的期望收益: =0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ P 2 =w 1 σ 1 2 +w 2 σ 2 2 +2w 1 w 2 σ 1 σ 2 ρ 1,2 =0.5 2 ×0.0403 2 +0.5 2 ×0.0403 2 +2×0.5×0.5×0.0403×0.0403×0.3846 =0.001125 投资组合的标准差: σ P = =3.35% (4)证券1和证券3构成的投资组合的期望收益: =0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ P 2 =w 1 σ 1 2 +w 3 σ 3 2 +2w 1 w 3 σ 1 σ 3 ρ 1,3 =0.5 2 ×0.0403 2 +0.5 2 ×0.0403 2 +2×0.5×0.5×0.0403×0.0403×(一1) =0 投资组合的标准差: σ P =0 (5)证券2和证券3构成的投资组合的期望收益: =0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ P 2 =w 2 σ 2 2 +w 3 σ 2 2 +2w 2 w 3 σ 2 σ 3 ρ 2,3 =0.5 2 ×0.0403 2 +0.5 2 ×0.0403 2 +2×0.5×0.5×0.0403×0.0403×(一0.3846) =0.0005 投资组合的标准差: σ P =
【答案解析】