【正确答案】正确答案:(1)①证券1的期望收益、方差和标准差分别为:

=0.1×0.25+0.4×0.2+0.4×0.15+0.1×0.1=17.5% σ
1
2
=0.1×(0.25—0.175)
2
+0.4×(0.2—0.175)
2
+0.4×(0.15—0.175)
2
+ 0.1×(0.1—0.175)
2
=0.00163 σ
1
=

=4.03% ②证券2的期望收益、方差和标准差分别为:

=0.1×0.25+0.4×0.15+0.4×0.2+0.1×0.1=17.5% σ
2
2
=0.1×(0.25—0.175)
2
+0.4×(0.15—0.175)
2
+0.4×(0.2—0.175)
2
+ 0.1×(0.1—0.175)
2
=0.00163 σ
2
=

=4.03% ③证券3的期望收益、方差和标准差分别为:

=0.1×0.1+0.4×0.15+0.4×0.2+0.1×0.25=17.5% σ
3
2
=0.1×(0.1—0.175)
2
+0.4×(0.15—0.175)
2
+0.4×(0.2—0.175)
2
+0.1×(0.25—0.175)
2
=0.00163 σ
3
=

=4.03% (2)根据协方差和相关系数的计算公式,可得: ①证券1和证券2的协方差: Cov(1,2)=0.1×(0.25—0.175)×(0.25—0.175)+0.4×(0.2—0.175)× (0.15—0.175)+0.4×(0.15—0.175)×(0.2—0.175)+ 0.1×(0.1—0.175)×(0.1—0.175)=0.000625 相关系数为: ρ
1,2
=Cov(1,2)/σ
1
σ
2
=0.000625/(0.0403×0.0403)=0.3846 ②证券1和证券3的协方差: Cov(1,3)=0.1×(0.25—0.175)×(0.1—0.175)+0.4×(0.2—0.175)× (0.15—0.175)+0.4×(0.15—0.175)×(0.2—0.175)+ 0.1×(0.1—0.175)×(0.25—0.175)=一0.001625 相关系数为: ρ
1,3
=Cov(1,3)/σ
1
σ
2
=一0.001625/(0.0403×0.0403)=一1 ③证券2和证券3的协方差: Cov(2,3)=0.1×(0.25—0.175)×(0.1一0.175)+0.4×(0.15—0.175)× (0.15—0.175)+0.4×(0.2—0.175)×(0.2—0.175)+ 0.1×(0.1一0.175)×(0.25—0.175)=—0.000625 相关系数为: ρ
2,3
=Cov(2,3)/σ
1
σ
3
=一0.000625/(0.0403×0.0403)=—0,3846 (3)证券1和证券2构成的投资组合的期望收益:

=0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ
P
2
=w
1
σ
1
2
+w
2
σ
2
2
+2w
1
w
2
σ
1
σ
2
ρ
1,2
=0.5
2
×0.0403
2
+0.5
2
×0.0403
2
+2×0.5×0.5×0.0403×0.0403×0.3846 =0.001125 投资组合的标准差: σ
P
=

=3.35% (4)证券1和证券3构成的投资组合的期望收益:

=0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ
P
2
=w
1
σ
1
2
+w
3
σ
3
2
+2w
1
w
3
σ
1
σ
3
ρ
1,3
=0.5
2
×0.0403
2
+0.5
2
×0.0403
2
+2×0.5×0.5×0.0403×0.0403×(一1) =0 投资组合的标准差: σ
P
=0 (5)证券2和证券3构成的投资组合的期望收益:

=0.5×0.175+0.5×0.175=0.175 投资组合的方差: σ
P
2
=w
2
σ
2
2
+w
3
σ
2
2
+2w
2
w
3
σ
2
σ
3
ρ
2,3
=0.5
2
×0.0403
2
+0.5
2
×0.0403
2
+2×0.5×0.5×0.0403×0.0403×(一0.3846) =0.0005 投资组合的标准差: σ
P
=
