问答题
用配方法化下列二次型为标准型
(1)f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+2x
1
x
2
—2x
1
x
3
+2x
2
x
3
.
(2)f(x
1
,x
2
,x
3
) =x
1
x
2
+x
1
x
3
+x
2
x
3
.
【正确答案】正确答案:(1)f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+2x
1
x
2
—2x
1
x
3
+2x
2
x
3
= [x
1
2
+2x
1
x
2
—2x
1
x
3
+(x
2
一x
3
)
2
]一(x
2
一x
3
)
2
+2x
2
2
+2x
2
3
=(x
1
+x
2
一x
3
)
2
+x
2
2
+4x
2
x
3
一x
3
2
=(x
1
+x
2
一x
3
)
2
+x
2
2
+4x
2
x
3
+4x
3
2
一5x
3
2
=(x
1
+x
2
一x
3
)
2
+(x
2
+2x
3
)
2
—5x
3
2
.

原二次型化为f(x
1
,x
2
,x
3
)=y
1
2
+y
2
2
一5y
3
2
. 从上面的公式反解得变换公式:

变换矩阵

(2)这个二次型没有平方项,先作一次变换

f(x
1
,x
2
,x
3
) =y
1
2
一y
2
2
+2y
1
y
3
. 虽然所得新二次型还不是标准的,但是有平方项了,可以进行配方了: y
1
2
一y
2
2
+2y
1
y
3
=(y
1
+y
3
)
2
一y
2
2
一y
3
2

则f(x
1
,x
2
,x
3
)=z
1
2
一z
2
2
一z
3
2
.

【答案解析】