问答题 设A,B,C为任意集合,试证:
【正确答案】A×(B∪C)={(x,y)|x∈A且y∈B∪C}
   ={(x,y)|x∈A且y∈B或x∈A且y∈C}
   ={(x,y)|(x,y)∈A×B或(x,y)∈A×C}
   ={(x,y)|(x,y)∈(A×B)∪(A×C)}
   =(A×B)∪(A×C)
【答案解析】
【正确答案】A×(B∩C)={(x,y)|x∈A且y∈B∩C}
   ={(x,y)|x∈A且y∈B,且x∈A且y∈C}
   ={(x,y)|(x,y)∈A×B且(x,y)∈A×C}
   ={(x,y)|(x,y)∈(A×B)∩(A×C)}
   =(A×B)∩(A×C).
【答案解析】上述等式左边是表示先做括号内的并、交运算,再做笛卡儿乘积;而等式右边则表示先做括号内的笛卡儿乘积,再做并、交运算.它们的结果应该是一样的,可以用笛卡儿乘积和并、交运算的定义及括号的优先级别来证明,这是集合等式证明中的一种基本方法.