设f(x,y)=cos(x 2 y),求f″ xx
【正确答案】正确答案:由 =-sin(x 2 y).2xy, =-sin(x 2 y).x 2 , 得 =-cos(x 2 y).4x 2 y 2 -sin(x 2 y).2y, =-cos(x 2 y).x 4 , 因此 f″ xx (1, )=[-cos(x 2 y).4x 2 y 2 -sin(x 2 y).2y] =-π, f″ yy (1, )=[-cos(x 2 y).x 4 ]
【答案解析】解析:在做此题时要注意,对谁求偏导数只需把谁看成变量,其他都看成常数,用一元函数求导的方法求导即可.