问答题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
【正确答案】
【答案解析】
当a=0时,显然α
1
是一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
;
当a=-10时,α
1
,α
2
,α
3
为极大线性无关组,且α
4
=-α
1
-α
2
-α
3
.
提交答案
关闭