解答题
15.
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
【正确答案】
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是A
n
α=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=O。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,一2,一2。因A—A,则有
【答案解析】
提交答案
关闭