单选题
函数y=e
x
-x-1的单调区间是( )。
A、
(A) (-∞,+∞)
B、
(B) (-∞,1]和[1,+∞)
C、
(C) [1,1]
D、
(D) (-∞,0]和[0,+∞)
【正确答案】
D
【答案解析】
y'=e
x
-1,在(-∞,0)内y'<0,所以y=e
x
-x-1在(-∞,0]上单调减少。又在(0,+∞)内y'>0,所以y=e
x
-x-1在[0,+∞)上单调增加
提交答案
关闭